Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose.

نویسندگان

  • Prashant Mohan-Anupama Pawar
  • Marta Derba-Maceluch
  • Sun-Li Chong
  • Leonardo D Gómez
  • Eva Miedes
  • Alicja Banasiak
  • Christine Ratke
  • Cyril Gaertner
  • Grégory Mouille
  • Simon J McQueen-Mason
  • Antonio Molina
  • Anita Sellstedt
  • Maija Tenkanen
  • Ewa J Mellerowicz
چکیده

Cell wall hemicelluloses and pectins are O-acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O-acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody-tissue-specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall-bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a β-1,4-endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1-expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active fungal GH115 α-glucuronidase produced in Arabidopsis thaliana affects only the UX1-reactive glucuronate decorations on native glucuronoxylans

BACKGROUND Expressing microbial polysaccharide-modifying enzymes in plants is an attractive approach to custom tailor plant lignocellulose and to study the importance of wall structures to plant development. Expression of α-glucuronidases in plants to modify the structures of glucuronoxylans has not been yet attempted. Glycoside hydrolase (GH) family 115 α-glucuronidases cleave the internal α-D...

متن کامل

Acetylation of Polysaccharides in Plant Cell Wall with a Focus on Woody Species

Plant cell wall in woody tissues is a complex matrix, which consists of cellulose, matrix polysaccharides and lignin. The matrix polysaccharides are substituted with acetyl group that are hypothesised to play important roles in determining properties of these polysaccharides. The aim of this thesis was to understand the role of Oacetylation in plants and investigate possibilities for improvemen...

متن کامل

In muro deacetylation of xylan affects lignin properties and improves saccharification of aspen wood

BACKGROUND Lignocellulose from fast growing hardwood species is a preferred source of polysaccharides for advanced biofuels and "green" chemicals. However, the extensive acetylation of hardwood xylan hinders lignocellulose saccharification by obstructing enzymatic xylan hydrolysis and causing inhibitory acetic acid concentrations during microbial sugar fermentation. To optimize lignocellulose f...

متن کامل

Acetylation of woody lignocellulose: significance and regulation

Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. More...

متن کامل

Analysis of SFL1 and SFL2 Promoter Region in Arabidipsis thaliana using Gateway Cloning System

SFL1 and SFl2 (SETH Four Like) genes are two members of SETH4 gene family in Arabidopsis thaliana expressed in saprophytic tissues. In this study, expression of SFL1 and SFL2 genes were studied using Gateway Cloning Technology. Primers were designed for PCR amplification of promoter region of SFL1 (900 bp) and SFL2 (930 bp) genes having attB1 recombination sites using Kod Hi Fi DNA polymerase e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant biotechnology journal

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2016